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Abstract

Ti(III)-mediated intramolecular free radical cyclization of epoxyallene ethers in an exo-mode was studied. The reaction afforded an
efficient and highly regioselective method of synthetically important 3-vinyl-4-hydroxymethyl tetrahydrofurans.
� 2007 Elsevier Ltd. All rights reserved.
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Intramolecular radical cyclization has created a new era
in recent years for carbon–carbon bond formation, and it
reflects its significance as a powerful tool in modern syn-
thetic chemistry.1 In addition to the reactive nature of car-
bon radicals, high regioselectivity is frequently achieved in
intramolecular reactions. The mildness and regio- and
stereoselectivities of 5-hexenyl radical cyclization have
extensively been used2 for the construction of five-mem-
bered rings.

Tetrahydrofuran derivatives, especially containing vinyl
and hydroxymethyl groups, are versatile precursors for the
synthesis of naturally occurring cytotoxic3or antiplatelet-
aggregation, vascular relaxing and antimutagenic activi-
ties4 and also for the construction of a variety of furfuran
lignans5 and other natural products.6 However, the
synthetic methods for this kind of compounds need either
complicated substrates5b,c,6 or multiple reaction
steps,3,4,5a,b,d,7 so developing a short and efficient method
to synthesize this kind of compounds is of interest and
value.
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The reductive opening of an epoxide via single-electron
transfer (SET) to a radical intermediate promoted by
titanocene monochloride (Cp2TiCl) and the subsequent
5-exo radical trapping reaction represents a valuable
synthetic tool that has been used in intramolecular car-
bon–carbon bond forming reactions.8 Thus, epoxides can
provide an excellent source of functionalized radicals.9

The high regioselectivity of the epoxide cleavage via C–O
homolysis is guided by the relative stabilities of the interme-
diate radicals. The trapping groups are usually unsaturated
system such as alkenes, alkynes8e,10 and nitriles.8g However,
to the best of our knowledge, very little is known concerning
the Ti(III)-mediated intramolecular free radical addition to
the allenes. Radical reactions of allenes have been paid
much attention because of the unique bonding character,11

and are of current interest.12 To expand upon the aforemen-
tioned chemistry, intramolecular cyclizations of epoxy-
allene ethers were investigated. In addition to achieving a
new approach for constructing functional oxygen hetero-
cycles, this investigation also presents an opportunity to
address the regioselectivity issue in radical processes involv-
ing allenes, which is not a well-resolved problem.13

The exo-cyclization (path a) of radical intermediate 2

would lead to a vinyl radical 3, and central-cyclization
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Table 1
Ti(III)-mediated radical cyclization of epoxyallene ethers
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1 (1a) –(CH2)4– 84(4a)/6 64:36
2 (1b) –(CH2)5– 72(4b)/8 64:36
3 (1c) –(CH2)6– 76(4c)/8 63:37
4 (1d) –(CH2)7– 71(4d)/7 62:48
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Scheme 1. Probable reaction pathways.
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(path b) would give the energetically more favoured allyl
radical 5 (Scheme 1). Since this is an intramolecular
radical process, endo-cyclization might be prohibited due
to geometric constrains. With these issues in mind, we
report here a highly regioselective radical cyclization of
epoxyallene ethers for the synthesis of multifunctional
tetrahydrofurans.

The first substrate we examined for this reaction was
cyclopentyl epoxyallene ether14 (1a). The radical cycli-
zation of 1a using Cp2TiCl in THF15 under nitrogen for
1 h afforded the cyclization product 4a containing a vinyl
group at C-3 and hydroxymethyl group at C-4 position
in 84% yield, along with 6% of deoxygenation product15

7a indicating that the radical cyclization was conducted
with high regioselectivity in an exo-mode (Scheme 2). The
central-cyclized product 6a was not found.

On the basis of this promising result, the Ti(III)-medi-
ated cyclization of a variety of epoxyallene ethers was
tested.16 The results are summarized in Table 1. From
Table 1, similar results were obtained for both monosubsti-
tuted and disubstituted epoxyallene ethers. For the ring
substituted substrates 1a–e, the multifunctional oxaspiro-
compounds 4a–e were isolated in good yields (entries
1–5). And for the two same alkyl substituted substrates
1f,g, 4f,g were obtained in similarly good yields (entries 6
and 7). Compared with the two same substituted sub-
strates, the different substituted and racemic substrates
1j,k also afforded the corresponding cyclized products in
good yields (entries 10 and 11). However, to our surprise,
when both the substituted groups were hydrogen and phen-
yl, an unidentified mixture was obtained (entries 8 and 9).

As indicated in Table 1, products 4a–g were obtained in
an inseparable mixture of diastereoisomers with the ratio
range as 56:44 to 70:30. The ratio of diastereoisomers of
each compounds 4a–g was determined by 1H NMR based
on the splitting pattern for hydrogen atom at C-3 position.
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Scheme 2. The formation of multifunctional tetrahydrofuran 4a.
Compared with the literature,10b,c our results indicated that
the major isomer of products was the one with the vinyl
and hydroxymethene groups at cis-position.17Attempts to
separate products 4j,k by HPLC to provide the ratios of
stereoisomers did not yield good separation results.18

Besides the ethereal substrates, this radical cyclization
can also be extended to synthesize multifunctional
pyrrolidines. As shown in Scheme 3, when the N-tosyl
containing epoxide 8 was subjected to the reaction condi-
tions, the corresponding N-tosyl pyrrolidine 9 was isolated
in 80% yield, the ratio of two inseparable diastereoisomers
as 55:45.19 It is important to note that substituted pyrrol-
idines are important structural features in many natural
products.

In conclusion, we have developed the radical cyclization
of epoxyallene ethers induced by titanocene monochloride
(Cp2TiCl) with high regioselectivity in an exo-mode. This
reaction also provided a useful way for the synthesis of
3-vinyl-4-hydroxymethyl tetrahydrofuran derivatives.
Further studies of titanocene monochloride mediated
radical cyclization of epoxyallenes are ongoing in our
laboratory.
CH3

6 (1f) C2H5 C2H5 75(4f)/8 70:30
7 (1g) n-C3H7 n-C3H7 77(4g)/7 70:30
8 (1h) H H —(4h)c —
9 (1i) C6H5 C6H5 —(4i)c —

10 (1j) H C6H5 80(4j)/7 —
11 (1k) CH3 CH3OC6H4CH2 74(4k)/8 —

a Isolated yield.
b The ratio was determined by 1H NMR of the isolated product.
c Unidentified mixture was obtained.
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